
Mathématiques Terminale Spécialité

DM n°3 — Corrigé

Partie A

1. Voir figure.

2. (a) Tout d’abord, les droites (I J ) et (GC ) sont coplanaires car les points
I , J , G et C appartiennent tous au plan (HGC ). De plus, ces droites ne
sont ni confondues, ni parallèles donc elles sont sécantes en un point L.

(b) Voir figure.

3. Le point L appartient à (I J ) donc il est dans le plan (I JK ). De plus, il
appartient à la droite (GC ) donc il est dans le plan (BCG). Par suite, il
appartient à l’intersection des plans (I JK ) et (BCG).

Le point K appartient au plan (I JK ) et il appartient au plan (BCG) car
il est sur la droite (F B) qui est incluse dans le plan (BCG). Le point K
appartient donc à l’intersection des plans (I JK ) et (BCG).

On en déduit que l’intersection des plans (I JK ) et (BCG) est la droite
(K L).
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Partie B
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2. (a) A(0;0;0) et G(1;1;1) donc
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un vecteur directeur de la droite (AG) et que celle-ci passe par le point
A, on en déduit qu’une représentation paramétrique de (AG) est
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Puisque ce système d’équations possède une unique solution, on en dé-
duit que le point P appartient à la droite (AG).

3. (a) On a les coordonnées suivantes :
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Ainsi,
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(b) On résout le système d’équations :
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Comme le système possède une unique solution, on en déduit que
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des vecteurs
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(c) Puisque les vecteurs
−→
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−→
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J , K et L sont coplanaires.

4. Puisque les points I , J , K et L sont coplanaires alors le point P appar-
tient au plan (I JK ). De plus, P appartient au plan (ABG) puisqu’il ap-
partient à la droite (AG). On en déduit que P appartient à l’intersection
des plans (I JK ) et (ABG).

D’autre part, le point I appartient à la fois au plan (I JK ) et au plan
(ABG) (car il appartient à la droite (HG) qui est incluse dans le plan
(BCG)). Par suite, I appartient à l’intersection des plans (I JK ) et (ABG).

On en déduit alors que l’intersection des plans (I JK ) et (ABG) est la
droite (I P ).
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