Mathématiques

Terminale Spécialité

DM n°3 — Corrigé

Partie A

1. Voir figure.

2. (a) Toutd’abord, les droites (1)) et (GC) sont coplanaires car les points
I, J, G et C appartiennent tous au plan (HGC). De plus, ces droites ne
sont ni confondues, ni paralleles donc elles sont sécantes en un point L.

(b) Voir figure.

3. Le point L appartient a (/J) donc il est dans le plan (IJK). De plus, il
appartient a la droite (GC) donc il est dans le plan (BCG). Par suite, il
appartient a I'intersection des plans (IJK) et (BCG).

Le point K appartient au plan (/JK) et il appartient au plan (BCG) car
il est sur la droite (FB) qui est incluse dans le plan (BCG). Le point K
appartient donc a I'intersection des plans (IJK) et (BCG).

On en déduit que l'intersection des plans (I/K) et (BCG) est la droite
(KL).
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Partie B

Xg+x + zZc+z
1. I est le milieu de [GH] donc I( Gz H;yGZyH; G2 H) donc
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On en déduit que ](0; 1; Z)

Enfin, puisque K est le milieu de [FB], on a : AK = AB+ BK = AB +

l— — 1— 1
EBF:AB+5AE.OnendéduitqueK(l;O;E).
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un vecteur directeur de la droite (AG) et que celle-ci passe par le point
A, on en déduit qu’'une représentation paramétrique de (AG) est

1-0
2. (a) A(0;0;0) et G(1;1;1) donc Xé(l —0) d'oit AG (1) Puisque AG est
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Puisque ce systeme d’équations possede une unique solution, on en dé-
duit que le point P appartient a la droite (AG).

3. (@) On ales coordonnées suivantes :
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Ainsi,IP = al] + BIK si, et seulement si,
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Comme le systéme posséde une unique solution, on en déduit que IP =

= 33— _ -  a s L N
;I J+ ?I K. Puisque IP peut s’écrire comme une combinaison linéaire

des vecteurs I_j et ﬁ( alors les vecteurs ﬁ), I_j et I_Ié sont coplanaires.

(c) Puisque les vecteurs ﬁ, 1J et IK sont coplanaires alors les points I,
J, K et L sont coplanaires.

4. Puisque les points I, J, K et L sont coplanaires alors le point P appar-

tient au plan (/JK). De plus, P appartient au plan (ABG) puisqu'’il ap-
partient a la droite (AG). On en déduit que P appartient a I'intersection
des plans (IJ/K) et (ABG).

D’autre part, le point I appartient a la fois au plan (/JK) et au plan
(ABG) (car il appartient a la droite (HG) qui est incluse dans le plan
(BCGQ)). Par suite, I appartient a l'intersection des plans (IJK) et (ABG).
On en déduit alors que l'intersection des plans (IJK) et (ABG) est la
droite (IP).



